Structure-function relations in dendritic spines: is size important?

نویسندگان

  • E Korkotian
  • M Segal
چکیده

The recent use of novel high-resolution imaging methods of living neurons in vitro has led to a change in the view of the dendritic spine, from a stable, long-term memory storage device to that of a dynamic structure, which can undergo fast morphological changes over periods of hours and even minutes. While the functional significance of these changes in spine dimensions is still obscure, we have obtained evidence to indicate that the length of the spine has a critical role in determining the degree of interaction between the spine head and the parent dendrite, such that longer spines are more independent of the parent dendrite than the short ones. We have now studied the role of intracellular calcium stores in determining the magnitude and time course of spine responses to a calcium surge evoked in response to glutamate, which causes an influx of calcium, and the results indicate that spine morphology has an important role in determining the involvement of the stores in calcium responses. Since spines can change their length over a rather short time, these results indicate that changes in spine length serve to fine-tune the interaction between the spine head and the parent dendrite on a continuous basis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dendritic spines: the locus of structural and functional plasticity.

The introduction of high-resolution time lapse imaging and molecular biological tools has changed dramatically the rate of progress towards the understanding of the complex structure-function relations in synapses of central spiny neurons. Standing issues, including the sequence of molecular and structural processes leading to formation, morphological change, and longevity of dendritic spines, ...

متن کامل

Overview on the structure, composition, function, development, and plasticity of hippocampal dendritic spines.

There has been an explosion of new information on the neurobiology of dendritic spines in synaptic signaling, integration, and plasticity. Novel imaging and analytical techniques have provided important new insights into dendritic spine structure and function. Results are accumulating across many disciplines, and a step toward consolidating some of this work has resulted in Dendritic Spines of ...

متن کامل

The structure and function of actin cytoskeleton in mature glutamatergic dendritic spines.

Dendritic spines are actin-rich protrusions from the dendritic shaft, considered to be the locus where most synapses occur, as they receive the vast majority of excitatory connections in the central nervous system (CNS). Interestingly, hippocampal spines are plastic structures that contain a dense array of molecules involved in postsynaptic signaling and synaptic plasticity. Since changes in sp...

متن کامل

Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function.

Dendritic spines, the tiny protrusions that stud the surface of many neurons, are the location of over 90% of all excitatory synapses that occur in the CNS. Their small size has, in large part, made them refractory to conventional experimental approaches. Yet their widespread occurrence and likely involvement in learning and memory has motivated extensive efforts to obtain quantitative descript...

متن کامل

Examining Form and Function of Dendritic Spines

The majority of fast excitatory synaptic transmission in the central nervous system takes place at protrusions along dendrites called spines. Dendritic spines are highly heterogeneous, both morphologically and functionally. Not surprisingly, there has been much speculation and debate on the relationship between spine structure and function. The advent of multi-photon laser-scanning microscopy h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Hippocampus

دوره 10 5  شماره 

صفحات  -

تاریخ انتشار 2000